On Minimum Wiener Polarity Index of Unicyclic Graphs with Prescribed Maximum Degree
نویسندگان
چکیده
منابع مشابه
On the Wiener Index of Unicyclic Graphs
The Wiener index of a graph G is defined as W (G) = ∑ u,v dG(u, v), where dG(u, v) is the distance between u and v in G, and the sum goes over all pairs of vertices. In this paper, we characterize the connected unicyclic graph with minimum Wiener indices among all connected unicyclic graphs of order n and girth g with k pendent vertices.
متن کاملMaximizing Kirchhoff index of unicyclic graphs with fixed maximum degree
The Kirchhoff index of a connected graph is the sum of resistance distances between all unordered pairs of vertices in the graph. Its considerable applications are found in a variety of fields. In this paper, we determine the maximum value of Kirchhoff index among the unicyclic graphs with fixed number of vertices and maximum degree, and characterize the corresponding extremal graph.
متن کاملWiener Polarity Index of Tensor Product of Graphs
Mathematical chemistry is a branch of theoretical chemistry for discussion and prediction of the molecular structure using mathematical methods without necessarily referring to quantum mechanics. In theoretical chemistry, distance-based molecular structure descriptors are used for modeling physical, pharmacologic, biological and other properties of chemical compounds. The Wiener Polarity index ...
متن کاملMaximizing Wiener index of graphs with fixed maximum degree
The Wiener index of a graph is the sum of all pairwise distances of vertices of the graph. Fischermann et al [5] characterized the trees which minimize the Wiener index among all trees with the maximum degree at most ∆. They also determined the trees which maximize the Wiener index, but in a much more restricted family of trees which have two distinct vertex degrees only. In this note, we fully...
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Mathematics
سال: 2014
ISSN: 1110-757X,1687-0042
DOI: 10.1155/2014/316108